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Campus Scienti�que

73376 Le Bourget-du-Lac, France

Rencontres Niçoises de Mécanique des Fluides
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Physical phenomena - I
Two applications which motivated this study

� Wave sloshing in lique�ed natural gas (LNG) carriers
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Physical phenomena - II
Two applications which motivated this study

� Wave impact on walls and coastal structures

FIG.: Experiments at GWK (Hannover)
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Wave impacts on a wall
Ref : Bullock, Obhrai, Peregrine, Bredmose (2007)

Challenge :
Determine efforts exerted by waves on structures

Impacts classi�cation :
� low-aeration : the water

adjacent to the wall
contains typically 5% of air

� high-aeration : higher level
of entrained air with clear
evidence of entrapment
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Main results of the experimental study
Ref : Bullock, Obhrai, Peregrine, Bredmose (2007)

� Low-aeration impact
� temporary and spatially localised pressure impulse

� High-aeration impact
� less localised pressure spike with a longer rise time, fall

time and duration
� peak values of the pressure are lower

Conclusion :
hh . . .Even when the pressures during a high-aeration impact are
lower, the fact that the impact is less spatially localised and
lasts longer may well lead to a higher total impulse. . . ii
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In�uence of aeration
Ideas for mathematical modelling

For low-aeration water wave
impact (� g � 0:05) :

� Sound speed drops down
to � 54m

s
� Compressible effects are

very important
� Mach number is not tiny

anymore

� CFL condition is not so
severe

� Explicit in time scheme
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FIG.: Sound speed in the air/water
mixture
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Choice of the mathematical model
Various types of models

Context :
� Challenge is to determine efforts exerted by waves on

structures

� Flows associated with wave impacts are compressible and
complicated (wave breaking . . .)

1 Free-surface model
2 Two-phase model with �nite drag
3 Two-phase model with in�nite drag
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Free-surface models
Compressible inviscid model

Governing equations :
� @t� + r � (� ~u) = 0

� @t(� ~u) + r � (� ~u 
 ~u + pI) = � ~g

� @t(� E) + r � (� H~u) = � ~g � ~u

Equation of state : p = p(�; e)

Boundary conditions :
Kinematic : � t + ~u � r � = w, z = �

Dynamic : p = p0, z = �

� Gas is represented by a boundary condition
� Wave breaking cannot be handled
� Does not allow a mixing
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Two-phase �nite drag model
Six equations model

Governing equations :

� @t(� � � � ) + r � (� � � � ~u� ) = 0

� @t(� � � � ~u� ) + r � (� � � � ~u� 
 ~u� ) + � � r p = � � � � ~g � F D

� @t(� � � � E� ) + r � (� � � � H� ~u� ) + p� �
t = � � � � ~g � ~u� � Q E

Equation of state : EOS� (p; � � ; e� ) = 0

Shortcomings :
� Comlex and computationally expensive

� Non-hyperbolic in some regimes

Possible solution :
FD; QE ! 1
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Four equations model or homogeneous model

Mass conservation for each phase :

@t(� � � � ) + r � (� � � � ~u) = 0;

Momentum equation :

@t(� ~u) + r �
�
� ~u 
 ~u + pI

�
= � ~g;

Energy conservation :

@t
�
� E

�
+ r �

�
� H~u

�
= � ~g � ~u;

� + + � � = 1, � := � + � + + � � � � , H := E + p
� , E := e+ 1

2 j~uj2.

DENYS DUTYKH (CNRS – LAMA) Violent aerated �ows Nice: 20 October 2008 14 / 48



Two-phase homogenous model
Equation of state

� Ideal gas law for light �uid :

p� = ( 
 � 1)� � e� ;

e� = c�
v T� ;

� Tait's law for heavy �uid :

p+ + � 0 = ( N � 1)� + e+ ;

e+ = c+
v T+ +

� 0

N � + ;

where 
 , c�
v , � 0, N are constants

Additional assumption : Two phases are in thermodynamic
equilibrium :

p := p+ = p� ; T := T+ = T�
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Motivation for the choice of this model
Trade-off between model complexity and accuracy of the results

Main reasons
� There is no special treatment of the inerface

� Can naturally handle wave breaking

� Compressible and hyperbolic

� Computations are not expensive

We believe that this model gives qualitatively correct results for
the �ow and right impact pressure

Reference :
F. Dias, D. Dutykh, J.-M. Ghidaglia. A two-�uid model for violent
aerated �ows . Submitted to Computers and Fluids. 2008
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Sound speed discussion
Acoustic wave propagation in different models

� Free-surface or two-�uid immiscible models

(c�
s )2 :=

@p�

@��

�
�
�
�
s

� Finite drag model (barotropic)

c2
s :=

� � � + (c+ )2(c� )2

(� + � � (c� )2 + � � � + (c+ )2)( � + � + + � � � � )

� In�nite drag (barotropic)

c2
s :=

(� + � � + � � � + )( c+ )2(c� )2

� + � � (c� )2 + � � � + (c+ )2

� In�nite drag with energy

1
� c2

s
:=

� + 
 +

� + (c+ )2
+

� � 
 �

� � (c� )2
�

1
� a2

; � a2 :=
� + � + (c+ )2


 + � 1
+

� � � � (c� )2


 � � 1
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Sound speed in the mixture
Some extremal properties
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Two-fluid infinite drag
Finite drag barotropic
Infinite drag barotropic

� There exists a minimum for the sound speed in the mixture

� For air/water mixture : � �
min � 0:5006and cs � 21:6 m

s
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Limit to a discontinous two-phase system
Two phases separated by an interface

� One can derive the following equation for � � :

� �
t + ( ~u � r )� � + � + � � � � 


�

r � ~u = 0 (1)

� We separate the phases : � � = H(z� � (~x; t))
� It follows that : � + � � = 0

� Substituting in (1) gives

� t + ( u; v) � r x� = w

� Governing equations
become

� t + ( ~u � r )� + � r � ~u = 0;

~ut + ( ~u � r )~u +
r p
�

= ~g:

x; y

z

H

z = � �
0 H

z = � (~x; t)

z = � � +
0 H

0

� : light �uid

+ : heavy �uid

FIG.: Sketch of the �ow.
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System of balance laws
Rewrite governing equations :

@w
@t

+ r � F (w) = S(~x; t; w);

Integrate them over control volume :

d
dt

Z

K
w d
 +

Z

@K
F (w) � ~nKL d� =

Z

K
S(w) d


Introduce cell averages :

wK(t) :=
1

vol(K)

Z

K
w(~x; t) d


How to express (F � ~n)j@K in terms of
f wKgK2 
 ?

K

@K

L*
nKL

O

FIG.: Control volume
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Finite volumes scheme
Finite Volumes Characteristic Flux (FVCF) scheme

Use numerical �ux of FVCF scheme to discretize advection
operator :

�( wK ; wL;~nKL) =
Fn(wK) + Fn(wL)

2
� U(� ;~nKL)

Fn(wL) � F n(wK)
2

where � is a mean state

� :=
vol(K)wK + vol(L)wL

vol(K) + vol(L)

and U(� ;~nKL) is the sign matrix

U := sign(An) � R sign(�) R� 1; An :=
@(F � ~n)(w)

@w

Remark : Since, the advection operator is relatively simple, U
can be computed analytically.

DENYS DUTYKH (CNRS – LAMA) Violent aerated �ows Nice: 20 October 2008 22 / 48



Idea behind MUSCL scheme
Monotone Upstream-centered Schemes for Conservation Laws

We �nd our solution in class of af�ne by cell functions :

wK(~x; t) := �wK + ( r w)K(~x � ~x0)

� If ~x0 is the barycenter of the cell K this representation is
conservative in the sense 1

vol(K)

R
K wK(~x; t) � �wK

� By consequence, we need to reconstruct gradient (r w)K
at cell centers

� Green-Gauss reconstruction method
� Least square reconstruction
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Green-Gauss reconstruction procedure
Dual cell coincides with control volume

This reconstruction is based on
Green-Gauss formula :

Z

K
r w d
 =

Z

@K
w~n d�

(r w)K �
1

vol(K)

Z

@K
w~n d�

(r w)K �
X

e2 @K

area(e)
vol(K)

wN1 + wN2

2
~n

O

K

@K ~n

e

N1

N2

FIG.: Control volume

The results, produced by this method, depend on interpolation
procedure to cell vertices. This will be explained below.
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Least squares reconstruction
In application to triangular meshes

We can write down three relations :

w1 � wK = ( r w)K � (~x1 � ~xO) + O(h2)

w2 � wK = ( r w)K � (~x2 � ~xO) + O(h2)

w3 � wK = ( r w)K � (~x3 � ~xO) + O(h2)

Then this system is solved in least squares
sense :
0

@
! 1(x1 � xK) ! 1(y1 � yK)
! 2(x2 � xK) ! 2(y2 � yK)
! 3(x3 � xK) ! 3(y3 � yK)

1

A �(r w)K =

0

@
! 1(w1 � wK)
! 2(w2 � wK)
! 3(w3 � wK)

1

A

K T1

T2

T3

O O1

O2

O3

! i :=
jj~xi � ~xK jj � n

P 3
j= 1 jj~xj � ~xK jj � n ; n = 1 or 2
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Interpolation method
Averaging technic

� In each cell we know
�
wK ; (r w)K

�

� by Taylor formula we can
determine the value at vertex N

wN = wOi +( r w)Oi �(~xN� ~xi)+ O(h2)

� Problem : we have d(N) different
values at the same point N,
where d(N) is the degree of
vertex N in the sense of Graph
theory

� Possible solution : averaging !

Oi+ 1

Oi

Oi� 1

N

DENYS DUTYKH (CNRS – LAMA) Violent aerated �ows Nice: 20 October 2008 26 / 48



Optimization problem technic
How to determine the weights ?

� We �nd vertex value wN in the form wN :=
P d( N)

i= 1 ! iwNiP d( N)
i= 1 ! i

� The weights are written as ! i = 1 + � ! i

� Holmes and Connell (1989) proposed to determine ! i as a
solution of the following constrained optimization problem :

d(N)X

i= 1

�
� ! i

� 2 ! min

Together with condition of zero pseudo-Laplacian :

L(~xN) �
d(N)X

i= 1

! i(~xi � ~xN) = 0

� Makarov et al (2003) improved this formulation
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Time integration : SSP-RK3(4) scheme
from : Spiteri & Ruuth (2002), SIAM J. Numer. Anal.

Third order 4-stage scheme with CFL = 2 :

u(1) = u(n) +
1
2

� tL(u(n) );

u(2) = u(1) +
1
2

� tL(u(1) );

u(3) =
2
3

u(n) +
1
3

u(2) +
1
6

� tL(u(n) );

u(n+ 1) = u(3) +
1
2

� tL(u(3) );
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Convergence test for MUSCL scheme - I
Simple test case for code validation

In order to compute the error of numerical method we solve the
simplest problem :

� scalar linear advection equation

@v
@t

+ ~u0 � r v = 0; v 2 R; ~u0 2 R2

� initial condition has hh compact support ii

� by consequence, we reduce the in�uence of boundary
conditions implementation
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Convergence test for MUSCL scheme - II
Sequence of re�ned meshes

Characteristic cell size h � 1.1670
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Convergence test for MUSCL scheme - II
Sequence of re�ned meshes

Characteristic cell size h � 0.5778
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Convergence test for MUSCL scheme - II
Sequence of re�ned meshes

Characteristic cell size h � 0.3010
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Convergence test for MUSCL scheme - II
Sequence of re�ned meshes

Characteristic cell size h � 0.1503
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Convergence test for MUSCL scheme - II
Sequence of re�ned meshes

Characteristic cell size h � 0.0754
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Convergence test for MUSCL scheme - II
Sequence of re�ned meshes

Characteristic cell size h � 0.0376
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Convergence test for MUSCL scheme - III
Linear advection test case
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Convergence test for MUSCL scheme - IV
Computation time
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Water drop test case - I
Geometry and description of the test case

� + = 0:1
� � = 0:9

� + = 0:9
� � = 0:1

0 0:5

0:7

1

1

~g
R = 0:15
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Water drop test case - II
Gravity acceleration g = 100 m

s2
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Water drop test case - III
Computation with a cartesian mesh (courtesy of J.-M. Rovarch & F. Dauvergne)

FIG.: t = 0
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Water drop test case - III
Computation with a cartesian mesh (courtesy of J.-M. Rovarch & F. Dauvergne)

FIG.: t = 0:1
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Water drop test case - III
Computation with a cartesian mesh (courtesy of J.-M. Rovarch & F. Dauvergne)

FIG.: t = 0:12
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Water drop test case - III
Computation with a cartesian mesh (courtesy of J.-M. Rovarch & F. Dauvergne)

FIG.: t = 0:16
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Water drop test case - III
Computation with a cartesian mesh (courtesy of J.-M. Rovarch & F. Dauvergne)

FIG.: t = 0:28
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Water drop test case - III
Computation with a cartesian mesh (courtesy of J.-M. Rovarch & F. Dauvergne)

FIG.: t = 0:34
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Water drop test case - III
Computation with a cartesian mesh (courtesy of J.-M. Rovarch & F. Dauvergne)

FIG.: t = 0:4
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Water drop test case - III
Computation with a cartesian mesh (courtesy of J.-M. Rovarch & F. Dauvergne)

FIG.: t = 0:46
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Water drop test case - III
Computation with a cartesian mesh (courtesy of J.-M. Rovarch & F. Dauvergne)

FIG.: t = 0:5
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Water drop test case - III
Computation with a cartesian mesh (courtesy of J.-M. Rovarch & F. Dauvergne)

FIG.: t = 0:6
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Water drop test case - III
Computation with a cartesian mesh (courtesy of J.-M. Rovarch & F. Dauvergne)

FIG.: t = 0:78
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Water drop test case - III
Computation with a cartesian mesh (courtesy of J.-M. Rovarch & F. Dauvergne)

FIG.: t = 2
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Water column test case - I
Geometry and description of the test case

� + = 0:9
� � = 0:1

� + = 0:1
� � = 0:9
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Water column test case - II
Gravity acceleration g = 100m=s2,in heavy �uid � + = 0:9, in light �uid � + = 0:1
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Maximal pressure on the right wall
as a function of time t 7�! max( x;y) 2 1� [0;1] p(x; y; t)
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Water column test case - III
Lighter gas case
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Maximal pressure on the right wall
as a function of time t 7�! max( x;y) 2 1� [0;1] p(x; y; t)
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Incompressible computation : volume fraction
Two-�uids Navier-Stokes equations solver : OpenFOAM
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Incompressible computation : pressure �eld
Two-�uids Navier-Stokes equations solver : OpenFOAM
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Impact pressures at the right wall
Comparison between compressible and incompressible models
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FIG.: Gas volume fraction � g = 0:9
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Impact pressures at the right wall
Comparison between compressible and incompressible models
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Perspectives
Directions for future work

Physics :
� Quantitative comparison with 6-equations model

� Parametric study (aeration and wave breaking in�uence on
impact pressures)

Mathematics :
� Formal justi�cation of 4-equations model

Numerics :
� Towards pure phases limit

� Implicit time stepping
� Low Mach number problem
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Other research directions

� Powder snow avalanches (in
collaboration with D. Bresch &
C. Acary-Robert)

� Re�ection on various models
(Kazhikov-Smagulov, Brenner-NS, . . .)

� Numerical simulations
� Protecting structures ef�ciency

estimation

� Visco-potential �ows
� Tsunami wave modelling

� Tsunami generation by earthquakes
� Seismology/hydrodynamics coupling
� Sediment layer effect
� Runup simulation
� Tsunami energy estimation

DENYS DUTYKH (CNRS – LAMA) Violent aerated �ows Nice: 20 October 2008 47 / 48



Thank you for your attention !

http://www.lama.univ-savoie.fr/ ˜ dutykh
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