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OUTLINE OF THE SHORT COURSE

1 LECTURE 1

Introduction (D.D.)

BIEM (C.V.)

Spectral CG-method (D.D.)

2 LECTURE 2

Higher-Order Spectral (HOS) methods (D.D.)

Dirichlet-to-Neumann (D2N) operator technique (D.D.)

Conformal mappings (C.V.)

REMARK:

Focus only on numerical methods for the full Euler equations

◮ No asymptotic models



WHAT WE WILL NOT COVER IN THIS COURSE:
SELF-LEARNING IS YOUR FRIEND!

◮ The first modern spectral method for water waves by

Rienecker & Fenton (1981-1982) [RF81, FR82]
◮ Methods based on eigenfunctions expansions

◮ Coupled-mode approach by Belibassakis & Athanassoulis

[AB99, BA06]

◮ Finite difference-based methods
◮ Any kind of meshless methods



PHYSICAL ASSUMPTIONS

MATHEMATICAL MODELING

PHYSICAL ASSUMPTIONS:

◮ Fluid is ideal (inviscid) (Re = ∞)

◮ Fluid is homogeneous (ρw = const)

◮ Flow is incompressible (∇ · u = 0)

◮ Flow is potential (u = ∇φ)

INTERFACE CONDITIONS:

◮ Interface is a graph: y = η(x, t)

◮ Air effect is neglected (ρa ≪ ρw )

◮ Free surface is isobaric

BASIC MODEL:

◮ Incompressible Euler equations with free surface



EULER EQUATIONS

WITH FREE SURFACE

◮ Incompressibility:

∇ · u = ∇ · (∇φ) = ∇
2φ = 0

◮ Momentum conservation:

ut + (u · ∇)u +
∇p

ρ
= g

φt +
1

2
|∇φ|2 + gz +

p

ρ
= B(t)

BOUNDARY CONDITIONS:

ηt + u · ∇η = v , z = η(x, t)

p = 0, z = η(x, t)

vn = u · nb = 0, z = −d(x)



WATER WAVE PROBLEM

POTENTIAL FLOW FORMULATION

◮ Continuity equation

∇
2φ = 0, (x, y) ∈ Ω× [−d(x), η(x, t)],

◮ Kinematic bottom condition

∂ φ

∂y
+∇φ · ∇d = 0, y = −d ,

◮ Kinematic free surface condition

∂ η

∂t
+∇φ · ∇η =

∂ φ

∂y
, y = η(x, t),

FIGURE: Laplace

◮ Dynamic free surface condition

∂ φ

∂t
+

1

2
|∇φ|2 + gη = 0, y = η(x, t).



HAMILTONIAN STRUCTURE

PETROV (1964) [PET64]; ZAKHAROV (1968) [ZAK68]; CRAIG & SULEM (1993) [CS93]

CANONICAL VARIABLES:

η(X, t): free surface elevation

ϕ(X, t): velocity potential at the free surface

ϕ(x, t) := φ(x, y = η(x, t), t)

◮ Evolution equations:

ρ
∂ η

∂t
=

δH

δϕ
, ρ

∂ ϕ

∂t
= −

δH

δη
,

◮ Hamiltonian:

H =

η
∫

−d

1

2
|∇φ|2 dy +

1

2
gη2

APPLICATION TO NUMERICS:

Used in D2N operator methods: [CS93, GN07, XG09]



LUKE’S VARIATIONAL PRINCIPLES

J.C. LUKE, JFM (1967) [LUK67]

◮ First improvement of the classical Lagrangian L := K − Π:

L =

t2
∫

t1

∫

Ω

ρL dx dt , L :=

η
∫

−d

(

φt +
1

2
|∇φ|2 + gy

)

dy

δφ: ∆φ = 0, (x, y) ∈ Ω× [−d , η],

δφ|y=−d :
∂ φ
∂y +∇φ · ∇d = 0, y = −d ,

δφ|y=η :
∂ η
∂t +∇φ · ∇η − ∂ φ

∂y = 0, y = η(x, t),

δη:
∂ φ
∂t + 1

2 |∇φ|2 + gη = 0, y = η(x, t).

◮ Water wave problem formulation is recovered from L

APPLICATION TO NUMERICS:

◮ Not fully explored. . .

◮ Coupled-mode technique by B. & A. (2006) [BA06]



WHY THIS PROBLEM IS DIFFICULT?
OUTLINE OF SOME NUMERICAL DIFFICULTIES

◮ Problem is highly nonlinear

◮ Computational domain is unknown

(y = η(x, t) to be determined)

◮ Formulation is stiff (Hamiltonian

structure)

◮ Taylor expansions involve very high

derivatives

◮ Physical and numerical instabilities

◮ No dissipation to stabilize computation

◮ Overturning surface. . .



To be continued by Claudio. . .
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