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OUTLINE OF THE SHORT COURSE

@ LECTURE 1
@ Introduction (D.D.)
@ BIEM (C.V))
@ Spectral CG-method (D.D.)

© LECTURE 2
@ Higher-Order Spectral (HOS) methods (D.D.)
@ Dirichlet-to-Neumann (D2N) operator technique (D.D.)
@ Conformal mappings (C.V.)

REMARK:
Focus only on numerical methods for the full Euler equations
» No asymptotic models



WHAT WE WILL NOT COVER IN THIS COURSE:

SELF-LEARNING IS YOUR FRIEND!

» The first modern spectral method for water waves by
Rienecker & Fenton (1981-1982) [RF81, FR82]
» Methods based on eigenfunctions expansions

» Coupled-mode approach by Belibassakis & Athanassoulis
[AB99, BA06]

» Finite difference-based methods
» Any kind of meshless methods




PHYSICAL ASSUMPTIONS

MATHEMATICAL MODELING

PHYSICAL ASSUMPTIONS:
» Fluid is ideal (inviscid) (Re = o)
» Fluid is homogeneous (p,, = const)
» Flow is incompressible (V -u = 0)
» Flow is potential (u = V¢)

INTERFACE CONDITIONS:
» Interface is a graph: y = n(x, t)
» Air effect is neglected (pa < pw)
» Free surface is isobaric

BASIC MODEL:
» Incompressible Euler equations with free surface J




EULER EQUATIONS

WITH FREE SURFACE

» Incompressibility:
V.-u=V-(Vg)=V2p=0

» Momentum conservation:

ut+(u-V)U+Vf=g

1
ot 5IVoP +gz+ 5 = B()

BOUNDARY CONDITIONS:
n+u-Vnp=v, z=n(xt)

p=0, z=n(x1)
Va=U-n,=0, z=-d(x)




WATER WAVE PROBLEM

POTENTIAL FLOW FORMULATION
» Continuity equation
V=0, (x,¥)€Qx[-d(x),n(x1)]

» Kinematic bottom condition

0¢ B _
w + V (Z) -V d == O, y = Cj7
» Kinematic free surface condition
an 0¢

» Dynamic free surface condition
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FIGURE: Laplace

y =n(x,1).



HAMILTONIAN STRUCTURE
PETROV (1964) [PET64]; ZAKHAROV (1968) [ZAK68]; CRAIG & SULEM (1993) [CS93]

CANONICAL VARIABLES:
n(x, t): free surface elevation

(X, 1): velocity potential at the free surface
o(X, 1) == o(x,y =n(x, 1), 1)

» Evolution equations:
on _ oA Op _ 07
Pat =50 Pot ~  on>
» Hamiltonian:
n
_ 1 2 1 5
o = [ 51962 ay+ on
—d
APPLICATION TO NUMERICS:
Used in D2N operator methods: [CS93, GN07, XG09]




LUKE’S VARIATIONAL PRINCIPLES
J.C. LUKE, JEM (1967) [LUK67]

» First improvement of the classical Lagrangian . := K —I:
n
1
L= //pg dx dt, L= /(¢[+2|V¢‘2+g}/) dy
—d

06: 8 =0, (%) € A x[~d.n],
00ly— o G5 +V$-Vd=0, y=—d,
00|,y G+ VO-Vn—52=0, y=n(x1),

on: %2+ 3IVo2+gn=0, y=mn(xt).

» Water wave problem formulation is recovered from £

APPLICATION TO NUMERICS:
» Not fully explored. ..
» Coupled-mode technique by B. & A. (2006) [BA06]



WHY THIS PROBLEM IS DIFFICULT?

OUTLINE OF SOME NUMERICAL DIFFICULTIES

» Problem is highly nonlinear

» Computational domain is unknown
(¥ = n(x, t) to be determined)

» Formulation is stiff (Hamiltonian
structure)

» Taylor expansions involve very high
derivatives

» Physical and numerical instabilities
» No dissipation to stabilize computation
» Overturning surface. ..




To be continued by Claudio. ..
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